I Filtri Solari INORGANICI

Emanuele Piras

WORKSHOP SOLARI Università di Bari, 12 Settembre 2024

Mineral suncare launches 2018 - 2021

Global: percentage of each active ingredient in new suncare launches, 2018-21

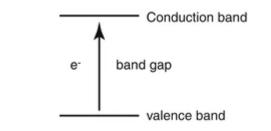
Jun 2018-May 2019 Jun 2019-May 2020 Jun 2020-May 2021 42 39 38 38 37 40 % of launches 30 24 25 21 13 Ω Titanium dioxide Ethylhexyl Zinc oxide (non-food) Benzophenone-3 (non-food) methoxycinnamate (non-food) (non-food)

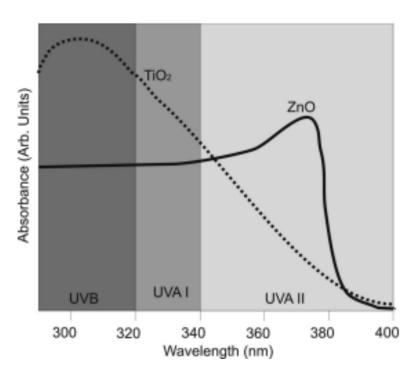
Source: Mintel GNPD, June 2018-May 2021

"Global brands... focus on mineral suncare as consumer demand for clean ingredients rise and reef-safe claims grow. Potentially harmful chemical actives are decreasing in new suncare launches, while greenlit mineral actives grow." (Mintel)

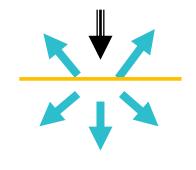
Efficaci, fotostabili e ampio spettro ≥ 2.0 in vivo SPF / % uso ~ 0.3/0.9 in vivo UVA PF / % uso

non penetrano , ottima compatibilità con la pelle

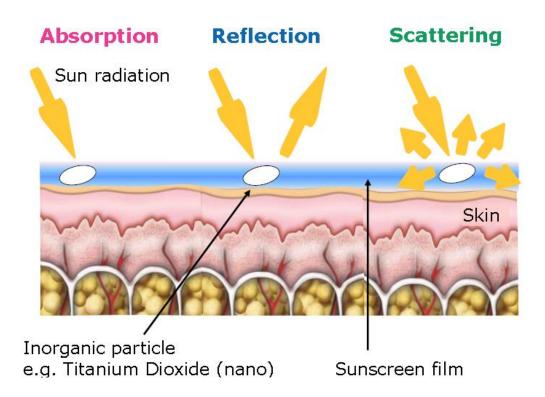

Elevata **trasparenza** anche ad altre concentrazioni Disperdibili in **Acqua e/o Oli**

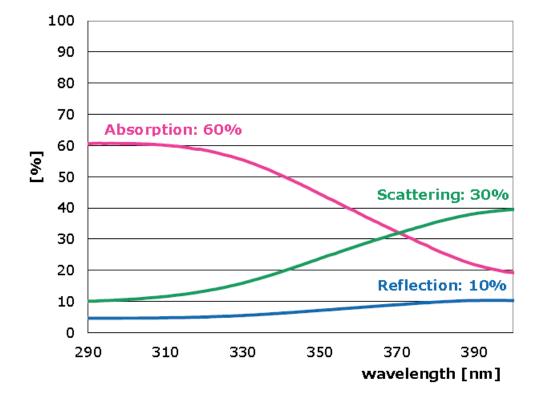

Filtri UV Globali approvati in tutto il mondo (GRASE US)

- The two inorganic UV filters interact with UV light by two mechanisms: absorption and reflection/scattering.
- Both ZnO and TiO₂ are semiconductor materials that allow light to be absorbed.
- In fact, approximately 85 to 95 percent of UV radiation is actually absorbed by inorganic UV filters (<u>Cole et al., 2016</u>).
- Similar to organic UV filters, UV radiation excites an electron into a higher energy orbital state (<u>Smijs and Pavel, 2011</u>).
- Specifically, overlapping electron orbitals in the crystalline structure form "bands," with gaps between energy bands ("band gap").
- Electrons are excited across the band gap from a lower valence band into a higher conduction band.
- Particle size and composition influences the amount of UV radiation that is absorbed or scattered/reflected.
- Larger particles reflect/scatter more UV radiation than smaller ones, though for all particles absorption is still a dominant mechanism.
- <u>Smaller, nanoscale particle UV filters reflect less visible light</u>, and therefore appear nearly transparent in color, compared to the whiter appearance of larger particles. Reducing particle size also shifts the UV wavelength range that the particles are protective against



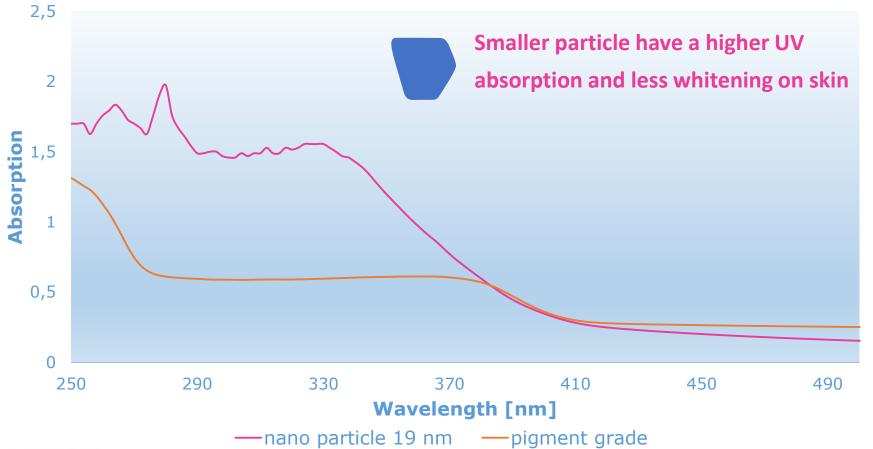
Riflesso



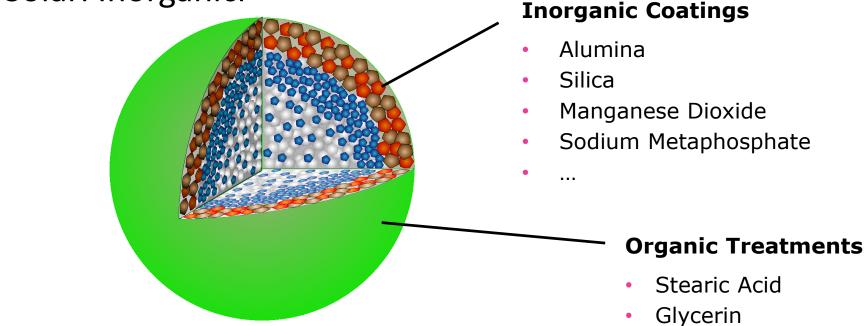

Scattering/Diffusione

inorganic UV filters

Pigment



Microfine particle, "nano"


- Crucial influence on
- light scattering / whiteness on skin
- absorption of UV radiation and efficiency
- specific surface
- surface coverage on skin
- dispersibility
- flocculation stability

Adjustment of specific surface to induce:

- passivation
- dispersability in media
- flocculation stability etc.

- Dimethicone, Hydrogen Dimethicone, Simethicone
- Tri(m)ethoxycaprylylsilane
- Cetyl Phosphate
- •••

TiO2 Orystalline Form	Coating Material*	Doping Material	Form	Bulk density (g/cm ³)	VSSA (m ² cm ⁻ ³)
> 98 % Rutile,	16 % Silica,	None	Hydrophobic	0.2	150
< 2 % Anatase	6 % Cetyl Phosphate		powder		
> 95 % Rutile,	7 % Alumina,	1000 ppm	Hydrophilic	0.16	370
< 5 % Anatase	0.7 % MnO2	Fe	powder		
100 % Rutile	3 % Alumina,	None	Hydrophobic	0.48	95
	9 %Triethoxycaprylylsilane		powder		

Materiai code	TiC2 crystaline form	Coating material	Doping material	Form	Buik den sity (g/cm3)	VSSA (m2 cm-8)
\$75-A	> 99.5% Rutile	6% silica, 16% alumina	None	Oil dispersion	0.35	460
S75-B	> 99.5% Rutile	6% silica, 16% alumina	None	Aqueous dispersion	0.35	460
\$75-C	> 99.5% Rutile	7.5% alumina, 9,5% aluminium stearate	None	Oil dispersion	0.31	220
\$75-D	> 99.5% Rutile	10% alumina, 13.5% stearate	None	Oil dispersion	0.58	300
\$75 - E	> 99.5% Rutile	10% alumina, 13.5% stearate	None	Aqueous dispersion	0.58	300
\$75 -F	Anatase 85%, Rutile 15%	7.5% trimethoxycaprylyisila ne	None	Hydrophobic powder	0.2	192
\$75-G	Anatase 85%, Rutile 15%	None	None	Hydrophilic powder	0.13	213
\$75-H	> 99,5% Rutile	6% alumina, 1% glycerin	None	Hydrophilic powder	0.91	260
\$75H	> 99,5% Rutile	7% alumina 10% stearic acid	None	Hydrophobic powder	0.28	300
\$75-J	> 99,5% Rutile	6% alumina 1% dimethicone	None	Hydrophobic powder	0.31	260
575-K	> 94% Rutile	6-8% aluminium hydroxide, 3.5-4.5% dimethicone/methico ne copolymer	None	Hydrophobic powder	0.12-0.28	426
\$75-L	> 94% Rutile	6.5-8.5% hydrated silica, 2.5-4.5% aluminium hydroxide, 4.5-6.5% dimethicone/methico ne copolymer	None	Hydrophobic powder	0.07-0.2	426
\$75-M	> 98% Rutile, <2% anatase	17% silica	None	Hydrophilic powder	0.09	260
S75-N	> 95% Rutile, <5% anatase	Alumina 10% simethicone 2%	1000 ppm Fe	Amphiphilic powder	0.16	400
\$75-O	100% Anatase	Simethicone 5%	None	Hydrophobic powder	0.75	400

- Filtri Solari Inorganici
 - Informazioni utili

Caution if you adapt existing formulations, difficulties may arise (instability, change in viscosity, ...):

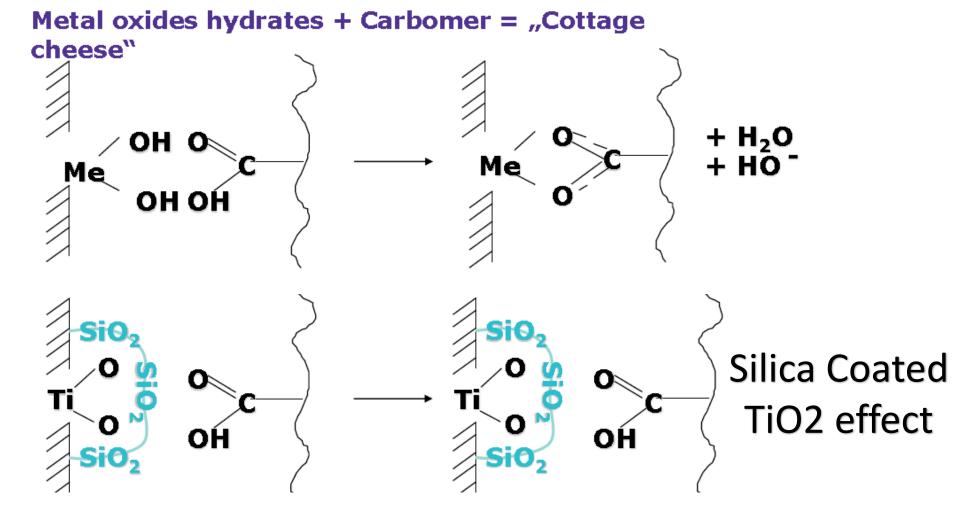
- when changing the load of ZnO/TiO₂
- when **replacing** an inorganic filter by another grade having a different coating and herewith different product properties
- Use appropriate level of emulsifiers (adsorption of emulsifiers on TiO₂ surface)
- Non ionic emulsifiers are to be preferred (interaction of TiO₂ with ionic emulsifiers can not be totally excluded)
- Ensure a **good dispersion** of the inorganic filter in the formulation use dispersing aids if necessary and check homogeneity by **microscopic examination**
- Needed energy input depends on the ZnO/TiO₂ type and coating
- ZnO may lead to **pH change** in formulation during storage
- Emulsions of low viscosity: Use stabilization systems to avoid sedimentation, e.g. microcristalline cellulose

• Suggerimenti Utili

o/w formulations

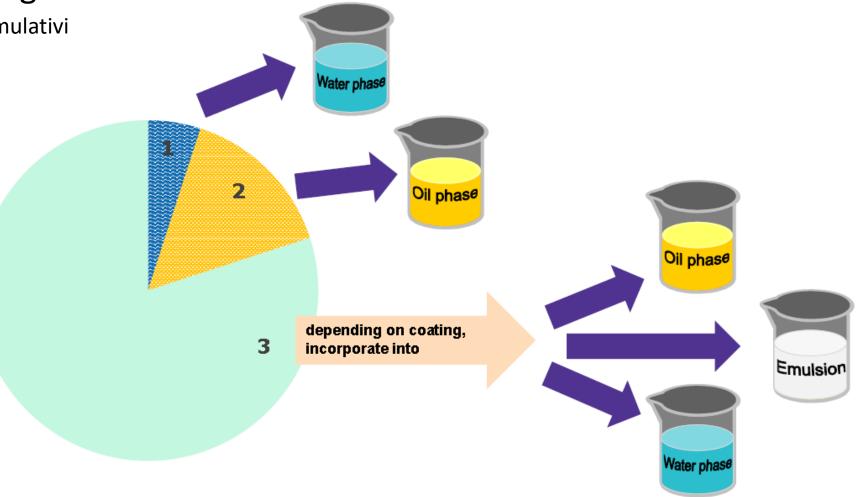
w/o and w/siformulations	Glyceryl Stearate & PEG 100 Stearate Steareth-10, Steareth-7, StearylAlcohol Hexadecyl-& octadecylglucoside + Cetyl/stearylalcohol Polyglyceryl-3 MethylglucoseDistearate Sodium CetearylSulfate, CetearylAlcohol, PEG-40 Castor Oil DimethiconeCopolyolPhosphate Phosphate based emulsifiers PEG-30 Dipolyhydroxystearate Polyglyceryl-4-Isostearate & Cetyldimethiconecopolyol& Hexyl Laurate Lauryl methiconecopolyol Cyclomethicone& Dimethiconecopolyol	(e.g.Arlacel165) (e.g.Emulsifier E 2155, Volpo-S10) (e.g.EmulgadePL 68/50) (e.g.TegoCare 450) (e.g.EmulgadeF) (e.g.PecosilPS-100) (e.g.AmphisolK, Emulsiphosor Crodafos) (e.g.ArlacelP135 for w/si, w/o & w/si-o) (e.g.AbilWE 09) (for w/si) (for w/si)			
Disperdenti	CetylDimethicone, PolyhydroxyStearic Acid, Polyglyceryl-3 Polyricinoleate				
Filmanti	PVP/EicoseneCopolymer, TricontanylPVP				
Viscosizzanti	Xanthan Gum (0.1 –0.3%) Carbomers/ Acrylate based copolymers(without agglomeration general	ly 0.1% possible)			

- Filtri Solari Inorganici
 - Suggerimenti Utili


Metal oxides, TiO₂ or ZnO in combination with Carbomers in formulations can cause Aggregated structures or inelegant textures ("cottage cheese" effect)

Strategies to avoid Carbomer-TiO2agglomerates:

Use of low concentrations Xanthan Gum (0.1 –0.3%) in the water phase to achieve small droplets and / or Stabilize the produced emulsion at 35 –40°C by means of a Carbomer-Pemulen/ oil phase dispersion (0.1 –0.2% Carbomer/ Pemulen) and additional homogenizer step Or use **Silica Coated TiO₂**



- Filtri Solari Inorganici
 - Suggerimenti Utili

• Suggerimenti formulativi

